Knock and Combustion Rate Interaction in a Hydrogen Fuelled Combustion Engine

نویسنده

  • Stanislaw Szwaja
چکیده

The paper describes correlation between combustion knock intensity and combustion rate calculated as the heat release rate from combustion pressure traces of a hydrogen fuelled spark ignited engine. Unlike a gasoline spark ignited (SI) engine, the hydrogen fuelled engine can easily generate knock during combustion at working conditions similar to a gasoline engine. However, the hydrogen knock does not necessarily come from hydrogen auto-ignition at the end phase of spark-controlled combustion process as it is typical at the gasoline fuelled engine. The phenomenon of hydrogen knock significantly differs from the gasoline knock due to different combustion mechanisms and different fuel thermo-chemical properties. The knock can be generated during hydrogen combustion itself as result of combustion instabilities. Intensity of this knock, expressed here by intensity of combustion pressure fluctuations, is several times lower in comparison with the combustion knock by fuel self-ignition process. This „light knock“ is a matter of this paper. The tests of hydrogen combustion in the IC engine has been conducted at air to hydrogen stoichiometric ratio at various compression ratios with spark timing sweep from -10 to 4 crank angle degrees referring to top dead centre of the engine piston. Obtained results show, that there is a positive correlation between the knock intensity and the combustion rate. This correlation is particularly observed at tests taken on the engine with compression ratio of 10. The conclusions should provide good premises for combustion knock modelling and its prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exhaust Emission Analysis of an Internal Combustion Engine Fuelled with Hydrogen-Ethanol Dual Fuel

The work presented in this paper is an attempt to evaluate the exhaust emission characteristics of a hydrogen-ethanol dual fuel combination with different percents of hydrogen substitutions (i.e. 0-80 % by volume and of 20 % increment ) at three different compression ratios of 7:1, 9:1 and 11:1. Experimental investigations have been carried out on a computer interfaced with; four-stroke cycle, ...

متن کامل

Experimental study of combustion noise level in LTC engine

In recent years, promising methods have been used to increase thermal efficiency, reduce nitrogen oxide and particle matter, which can be described as an example of an ethanol fuelled HCCI engine. But despite the many benefits of these engines, they continue to face problems such as increasing carbon monoxide production, unburned hydrocarbon, and producing combustion noise at high loads. In thi...

متن کامل

Ignition Control in the Hcci Combustion Engine System Fuelled with Methanol-reformed Gases

Homogeneous charge compression ignition (HCCI) combustion enables higher thermal efficiency and lower NOx emission to be achieved in internal combustion engines compared to conventional combustion systems. A new concept HCCI engine system fueled with dimethyl ether (DME) with a high cetane number and methanol-reformed gas (MRG) with high anti-knock properties has been proposed by the author et ...

متن کامل

Reformer Gas Application in Combustion Onset Control of HCCI Engine

Homogenous charge compression ignition (HCCI) combustion is spontaneous multi-site combustion of a nominally premixed air/fuel mixture that exhibits high rate of pressure rise and short combustion duration. To avoid excessive pressure rise rate and knocking, HCCI engines are fueled with highly diluted mixture using a combination of excess air and/or EGR. HCCI combustion is attractive due to ...

متن کامل

Effect of Injection Characteristics on Emissions and Combustion of a Gasoline Fuelled Partially-premixed Compression Ignition Engine

Conventional compression ignition (CI) engines are known for their high thermal efficiency compared to spark ignited (SI) engines. Gasoline because of its higher ignition delay has much lower soot emission in comparison with diesel fuel. Using double injection strategy reduces the maximum heat release rate that leads to NOx emission reduction. In this paper, a numerical study of a gasoline fuel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012